제1회 스포츠 심장 연구회 발족 기념 심포지움 # Cardiac Fibrosis in the Athlete: Etiology, Frequency, and Clinical Implications 동국의대 김지현 # Cardiac Fibrosis in the Athlete: Etiology, Frequency, and Clinical Implications Ji-Hyun Kim Dongguk University Ilsan Hospital # Myocardial fibrosis (MF) a common phenomenon in the late stages of diverse cardiac diseases and is a predictive factor for sudden cardiac death Myocardial fibrosis detected by LGE CMR has been reported to occur in 0% to 50% of asymptomatic athletes. However, the cause and mechanisms of myocardial fibrosis are unclear. | Мето | | |------|--| | | | | | | | | | # Fibrosis is usually detected in HCMP The risk of cardiac fibrosis ←Extensive physical activity Мето ### **CARDIOVASCULAR IMAGES** # Commotio Cordis in a Professional Soccer Player Value of MRI in Unraveling Myocardial Damage Circ Cardiovasc Imaging. 2018;11 Delayed gadolinium-enhanced CMR images in short-axis planes, during hospitalization (A) and at the 2-mo follow-up (B) showing subepicardial enhancement (arrows) in the inferior and lateral walls. Circ Cardiovasc Imaging. 2018;11 | NLETTIO | | | | |---|------|------|------| | *************************************** | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | | | | | | # Cardiac disease that cause myocardial fibrosis | The models of myocardial fibrosis | Cardiac diseases | |------------------------------------|--| | Replacement fibrosis | Myocardial infarction, sarcoidosis, myocarditis, toxic cardimyopathies, chronic renal insufficiency | | Reactive interstitial fibrosis | Hypertension, diabetes, non-ischemic dilated cardiomyopathy, hypertrophic cardiomyopathy, sarcoidosis, chronic renal insufficiency | | Infiltrative interstitial fibrosis | Amyloidosis, Anderson-Fabry disease | Front. Physiol. 8:238. # Inflammatory response in MF Total Total Treel T Memo # Etiology Studies have shown that prolonged endurance exercise leads to marked elevation of myocardial necrosis markers, BNP and an increase of inflammatory markers Until now, just hypothesis - prolonged endurance training, especially without adequate recovery may predispose to myocardial fibrosis Apart from the risk of arrhythmias, the consequences of myocardial fibrosis may include increased myocardial stiffness and local cardiac dysfunction Memo # Risk factor of CV disease in American football player | Study | Year | ASF Population | Participants, N | Key Findings | |--------------------------------|------|----------------------|-----------------|--| | Baron and Rinsky ¹⁹ | 1994 | Retired Professional | 6848 | 50% increased cardiovascular disease risk in linemen | | George et al ³⁰ | 2003 | Professional | 52 | 34% prevalence of SDB (apnea—hypopnea index ≥10) | | Tucker et al ¹² | 2009 | Professional | 504 | High prevalence of prehypertension and hypertension (75%) | | Selden et al ³¹ | 2009 | Professional | 69 | Cardiometabolic syndrome prevalent among linemen | | Hurst et al ³² | 2010 | Retired Professional | 201 | Presence of carotid artery plaque similar between retired players and BMI-matched healthy nonathletic controls | | Rice et al ³³ | 2010 | Professional | 137 | 19% prevalence SDB (respiratory disturbance index ≥5) | | Baron et al ²⁰ | 2012 | Retired Professional | 3439 | 50% increased cardiovascular mortality for those with playing-time BMI ≥30 | | Weiner et al ¹⁴ | 2013 | Collegiate freshman | 113 | High prevalence prehypertension and hypertension (61%) predicted by lineman position | | Kim et al ¹⁶ | 2015 | Collegiate freshman | 32 | Seasonal longitudinal increase in central aortic pulse pressure | | Crouse et al ³⁴ | 2016 | Collegiate freshman | 80 | High prevalence of prehypertension and hypertension (74%) | | Lin et al ¹⁷ | 2016 | Collegiate freshman | 87 | High prevalence of prehypertension and hypertension (63%) | | Kim et al ¹⁸ | 2017 | Collegiate | 40 | 55% prevalence of SDB (apnea–hypopnea index ≥5) | # Pathologic CV phenotypes among ASF players | Study | Year | ASF Population | Participants, N | Key Findings | |-----------------------------|------|---------------------|-----------------|---| | Baggish et al ¹⁵ | 2008 | Collegiate freshman | 24 | Seasonal longitudinal decrease in echocardiographic measures of diastolic function | | Weiner et al ¹⁴ | 2013 | Collegiate freshman | 113 | 31% of linemen developed concentric LV hypertrophy, positive correlation with change in SBP | | Kim et al ¹⁶ | 2015 | Collegiate freshman | 32 | Seasonal longitudinal increase in central aortic pulse pressure, PWV increased compared with older collegiate control group | | Lin et al ¹⁷ | 2016 | Collegiate freshman | 87 | Collegiate linemen with concentric LV hypertrophy were associated with decrements in LV GLS | | Kim et al ¹⁸ | 2017 | Collegiate | 40 | Athletes with SDB demonstrated significant correlation with reduced diastolic function and increased arterial stiffness | ASF indicates American-style football; GLS, global longitudinal strain; LV, left ventricle; PWV, pulse wave velocity; SBP, systolic blood pressure; SDB, sleep-disordered breathing. | Мето | | |------|--| | | | | | | | | | | | | # MF Assessment by CMR not echoCG Can be determined by microscopic examination of tissue samples or by CMR. Using the administration of a gadolinium-based contrast agent In the normal heart, the interstitial space undergoes normal "washout" of the contrast agent with no contrast accumulation. In the presence of myocardial injury or disease, the extracellular space increases leading to delayed "washout" and contrast accumulation. Higher concentration of contrast agent decreasesT1 relaxation time of the studied tissue, thus changing its signal intensity, which appears "bright" (hyperintense) as opposed to the normal myocardium (hypointense). Fig. 1. CMR using T1 mapping and ECV has a potential role in the exclusion of HCM in athletes presenting with LV hypertrophy. Curr Treat Options Cardio Med (2018) 20: 86 | Упето | | |-------|--| Study | Size | Exercise type | Age | Pattern | Prevalence | Associated factors | |-------------------------|----------|---|----------------|---|---|---| | Merghani [45•] | n = 152 | Masters endurance athletes | 54.4 ± 9 years | 7% Ischemic pattern
8% non-ischemic pattern | 14% male athletes | No relationship between
fibrosis and exercise
intensity, years of
training, or number of
competitions | | Breuckmann [46] | n = 102 | 'Ostensibly' healthy
male runners | 61 ± 11 years | 5% ischemic pattern
7% non-ischemic pattern | 12% prevalence | The event-free survival
rate was lower in
runners with
myocardial LGE than in
those without
myocardial LGE | | Tahir et al.[47••] | n = 83 | Triathletes | 43 ± 10 years | Focal non-ischemic
myocardial | 17% male athletes | Exercise-induced
hypertension and the
race distances | | Sanchis-Gomar [48] | n = 53 | 11 former 'elite' and
42 amateur-level
cyclists or runners | 55 ± 15 years | Non-ischemic pattern | 4% former 'elite' | No association with any
of the biomarkers of
fibrosis/remodeling | | Wilson [49] | n = 12 | Competitive
endurance
veteran athletes | 56 ± 6 years | 4 veteran athletes with
nonspecific cause
1 previous myocarditis
1 silent myocardial
infarction | 50% of veteran
athletes | Number of years spent
training, number of
competitive marathons
and ultra-marathons
completed | | Schnell [50] | n = 7 | Asymptomatic
athletes recruited
during workup of
abnormalities on
their regular
screening
examination | 26 ± 5 years | Extensive subepicardial
LGE predominantly in
the lateral wall | 100% prevalence as
per inclusion
criteria | Symptomatic ventricular
tachycardia and
progressive left
ventricular dysfunction | | LGE late gadolinium enh | ancoment | | | | | | # MF in triathletes: only men, not women 83 asymptomatic triathletes undergoing >10 training h per week vs. 36 sedentary controls → focal nonischemic myocardial fibrosis in 9 of 54 (17%) male triathletes (LGE+) but in none of the famela triathletes (n < 0.05) of the female triathletes (p < 0.05). Мето | | | Training volume/ | | | | | | T1 and ECV in athletes | |----------------------------------|--|---|-----------------------------|---|--|--|---|---| | Study | Study size | intensity | Age and sex | LGE vs controls | LGE pattern | T1 vs controls (ms) | ECV vs controls (%) | and comments | | Malek
et al ²² | 30 middle age
athletes vs
10 controls | Active, median 6 y of
ultramarathon
running | 40.9 ± 6.6, 100%
male | 27% vs 10% | Nonischemic (insertion
point—one in control
group, lateral wall) | 1200 ± 59 vs1214
± 32, P = .33 | 26.1 ± 2.9% vs 25.0
± 2.5%, P = .29 | Similar T1 and ECV | | Pujadas
et al ²¹ | 34 veteran athletes
vs 11 controls | >10 y of training, still in regular training | 48.2 ± 7.5, 100%
male | 9% vs 0% | Nonischemic(insertion point, lateral wall) | 943.6 ± 53 vs 984
± 37, P = .006 | 25.0 ± 2.0% vs 22.0
± 2.0%, P < .001 | Lower T1 and higher
ECV, but not after
correction for
hematocrit | | Banks
et al ²⁰ | 40 athletes vs
8 controls | 10 y of competitions,
currently 5.2
± 2.6 h/wk | 54 ± 5, 100%
male | - | - | 1172 ± 29 vs 1187
± 19, ns | 20.7 ± 3.7% vs 17
± 1.9%, P < .05 | Similar T1 and higher
ECV, values within
normal range in both
groups | | Gormeli
et al ¹⁷ | 46 athletes vs
41 controls | Two groups > and
<5 y of sport
activity, around
8.6-9.5 ± 2.5 h/wk | 24.5 ± 3.05,
62.2% male | - | - | 1268 ± 48 vs 1180
± 27, P < .001 | - | Higher T1, no ECV calculated | | Treibel
et al ²³ | 50 athletes vs
30 healthy
volunteers | >10 endurance
events in lifetime | 42 ± 14 y, 80%
male | Those with infarct princluded, other ty | | - | 26.2 ± 2.7% in young
athletes vs 28.0
± 2.9% | Lower ECV | | Tahir
et al ¹⁹ | 83 athletes vs
36 controls | >3 y of competitions,
>10 h/wk | 43 ± 10 y, 65%
male | 17% male, 0%
female vs 0% ns | Nonischemic
(inferolateral, insertion
points) | Male
990 ± 28 vs 1014
± 28,P < .01
Female
1015 ± 25 vs 1059
± 22, P < .0001 | Male 24.8 ± 2.2% vs 24.0 ± 3.0, ns Female 27.8 ± 1.9% vs 28.9 ± 3.3, ns | Lower T1 and similar
ECV
Athletes with LGE had
higher remote
myocardium ECV | | McDiarmid
et al ¹⁶ | 30 athletes vs
15 controls | Athletes committing
on regional,
national, or
international level | 31.7 ± 7.7 y,
100% male | 3% vs 0% | Nonischemic
(postmyocarditis
pattern) | 1178 ± 32 vs 1202
± 33, P = .02 | 22.5 ± 2.6% vs 24.5
± 2.2%, P = .02 | Lower T1 and ECV | | Mordi
et al ¹⁸ | 21 athletes with
depressed LVEF vs
21 controls | >6/h per wk of
intensive aerobic
exercise at an
amateur level | 45.9 ± 10.7 y,
100% male | 9.5% vs 0% | Nonischemic (insertion points) | 957 ± 32 vs 952
± 31, ns | 26.3 ± 3.6% vs 26.2
± 2.9, ns | Similar T1 and ECV | # Insertion point fibrosis - most often, limited to the inferior insertion point - M/C observed pattern in athletes irrespective of age - : 20~30% prevalence - correlated with a cumulative training load and training intensity may reflect the time of pressure and/or volume overload present in the RV during intensive exercise \rightarrow tension on the insertion points and may lead to microinjuries visible later as spots of LGE in that location - seems both age and training related and therefore may occur earlier in athletes - Has been also observed in around 10% of otherwise healthy elderly individuals and may form one of the elements of an aging heart Clin Cardiol. 2020;43:882-888 | Мето | | | |------|--|--| Inferolateral or septal nonischemic fibrosis less often observed in athletes than insertion point fibrosis Has been previously noticed in Fabry disease An acute or healed myocarditis Small, linear sub-epicardial or mid-myocardial areas of LGE in the inferolateral segments or in the interventricular septum Intensive, prolonged exercise → affect immune resistance in the short period after intensive exercise, which if combined with seasonal infections may predispose athletes to myocarditis Clin Cardiol. 2020:43:882-888 ## Ischemic fibrosis has been reported predominantly in veteran athletes(>50Y.O.) the prevalence of common CV risk factors in Olympic athletes - : surprisingly high - including 0.3% of hyperglycemia, - 3.8% of hypertension, 8% of smoking habit, 18% of positive family history, 25% of increased waist circumference, and 32% for dyslipidemia - →endurance athletes had generally low CV risk profile, but one to two risk factors were still present in 50% of them and 2% of them had three to four risk factors Clin Cardiol. 2020:43:882–888 Мето | | CMR characteristics | |--------------------|--| | Athlete's
heart | Fibrosis: Possible insertion point LGE, normal or reduced T1 time and ECV Other features: Symmetric enlargement of all heart chambers (balanced chamber mild dilatation), high bilateral stroke volumes, concentrically increased myocardial thickness usually up to 13 mm | | НСМ | Fibrosis: Mid-myocardial LGE in the hypertrophied segments, increased T1 time and ECV Other features: Asymmetric hypertrophy > 13 mm, small LVEDd< 54 mm, more prominent left atrial enlargement, multiple myocardial clefts/crypts | | DCM | Fibrosis: Nonischemic patterns of LGE in the LV, increased T1 time and ECV Other features: LVEDd> 60 mm, increased LV volume asymmetrically to other chambers, reduced LVEF not significantly increasing or decreasing during exercise | | ARVC | Fibrosis: Nonischemic patterns of LGE in the LV Other features: Regional RV wall akinesia/dyskinesia or dyssynchrony plus RVEDVi meeting major TFC for ARVC or RVEF < 40%, disproportionally larger RV than LV | | LVNC | Fibrosis: Nonischemic patterns of LGE in the LV Other features: Noncompacted to compacted layer ratio >2.3 (measured in long-axis view avoiding the apex), reduced thickness of the compacted layer, involvement of several LV segments, LVEF < 50% | | Мето | | |------|--| | | | | | | | | | | | | | | | # A determinant or Predictor of VT Replacement fibrosis + Reactive fibrosis | Methods | | Fibrosis markers | |-------------------------------|---------------------------------------|---| | Electrocardiography | Fragmented QRS in normal and wide QRS | Presence of an additional R wave (R'), or notching in the nadir of R or S wave, or presence of more than one R' (fragmentation) in two contiguous leads, correspondit to a major coronary artery territory More than 2 notches on the R or S wave in patients with wide QRS | | Echocardiography | Integrated backscatter | - Augmented regional ultrasonic reflectivity | | | Speckle-tracking strain imaging | – Abnormal global/regional longitudinal strain– Abnormal mechanical dispersion | | Biomarkers | Collagen turnover biomarkers | Increased PICP/PIIINP ratio Increased MMP-9/TIMP-1 ratio | | Cardiac magnetic
resonance | Late gadolinium
enhancement | Detection of patchy/interstitial fibrosis as hyperenhanced bright areas—Regional patterns of fibrosis:—ICM: fibrosis is usually sub-endocardial or transmural in the distribution of an occluded coronary artery—NICM: fibrosis is patchy and mid- myocardial or sub-epicardial—HCM: dense areas of replacement fibrosis usually in hypertrophied regions | | | T1 mapping | – Detection of diffuse myocardial fibrosis as shorter T1-time areas | | Nuclear imaging | SPECT | – Perfusion defects | | | PET | Metabolism-perfusion mismatch | HCM, hypertrophic cardiomyopathy; ICM, ischemic cardiomyopathy; MMP-9/TIMP-1, matrix metalloproteinase 9/ tissue inhibitor of MMP 1; NICM, nonischemic cardiomyopathy; PET, positron emission tomography; PICP/PIIINP, precollagen type I carboxyterminal peptide/precollagen type III aminoterminal peptide; SPECT, single photon emission computed tomography. | Мето | | |------|--| | | | | | | | | | | | | # Clinical implication of asymptomatic MF Not established but, a proposal of the following management strategy Only the detection of small insertion point fibrosis does not seem to require further evaluation. Presence of fibrosis extending beyond the insertion points in the interventricular septum or fibrosis elsewhere in the myocardium regardless of its pattern should prompt further evaluation, especially in the younger athlete age group. The index of suspicion, regarding potential cardiac disease, should increase if abnormal ECG or the presence of arrhythmias accompanies the detection of fibrosis. # **Summary** Increased availability and use of CMR is likely to identify small volume of scar of uncertain significance in a considerable proportion of athletes. CMR should be reserved for individuals with high index of suspicion for cardiac disease, including athletes with clinical symptoms or abnormalities on first-line investigations, as it may elucidate diagnosis and direct management. Some combination of available techniques and clinical adoption of new cutting edge methods may lead to a precise appraisal of fibrosis amount and texture, and the direct testing of fibrosis link with ventricular arrhythmias in the single patient. | Мето | | |------|--| To achieve success, whatever the job we have, we must pay a price. by Vince Lombardi | Мето | | |------|--| | | | | | | | | | | | | | | |